Constraints on Low Cloud Feedbacks from Observed Climate Variability

Tim Myers¹, Ryan Scott^{2,3}, Mark Zelinka¹, Steve Klein¹, Joel Norris², Peter Caldwell¹

Climatology of Net Cloud Radiative Effect from CERES-EBAF

Low Clouds: Primary Contributor to net CRE over Global Oceans

CERES
Flux-by-Cloud-Type
Dataset

Myers et al., upcoming AGU Monograph

In CMIP6, spread of low cloud feedback and ECS has increased relative to CMIP5

In CMIP6, spread of low cloud feedback and ECS has increased relative to CMIP5

Parameterization of unresolved boundary layer process likely explains model uncertainty

Parameterization of unresolved boundary layer process likely explains model uncertainty

External Cloud-Controlling Factors

Given

- i. spatially-resolved sensitivity of low cloud radiative fluxes to meteorological cloud-controlling factors from observed climate variability (meteorological cloud radiative kernels developed by Scott et al. (2020))
- ii. how these factors will change in response to climate warming (resolved by GCMs)

we can predict the marine low cloud feedback.

Not first to apply this framework*.

Our study is unique in its near-global scale and its constraints on the pattern of the low feedback.

*Qu et al. 2015; Zhai et al. 2015; Myers and Norris 2016; Brient and Schneider 2016; McCoy et al. 2017; Cesana and Del Genio 2021

We decompose the low cloud feedback at each 5° x 5° ocean grid box between 60°S and 60°N as

$$\lambda_{cloud} = \frac{dR}{dT} = \sum \frac{\partial R}{\partial x_i} \frac{dx_i}{dT}$$

R low cloud radiative flux

 x_i one of six cloud-controlling factors

T global mean surface temperature

We decompose the low cloud feedback at each 5° x 5° ocean grid box between 60°S and 60°N as

$$\lambda_{cloud} = \frac{dR}{dT} = \sum \frac{\partial R}{\partial x_i} \frac{dx_i}{dT}$$

R low cloud radiative flux

 x_i one of six cloud-controlling factors

T global mean surface temperature

 $\frac{\partial R}{\partial x_i}$

observation-based sensitivity of low cloud radiative flux to a perturbation in some cloud-controlling factor (meteorological cloud radiative kernels from Scott et al. (2020))

 $\frac{dx_i}{dT}$

change in cloud-controlling factor per degree global mean warming, predicted by 18 CMIP5 and CMIP6 models in abrupt4xCO2 simulations

Complete set of cloud-controlling factors x_i includes (from reanalysis)

sea-surface temperature (SST)

estimated inversion strength (EIS)

horizontal surface temp. advection

free-tropospheric relative humidity

free-tropospheric subsidence

near-surface wind speed

Using Satellite Cloud Observations to Constrain the Feedback

How do we estimate low cloud radiative anomalies R' globally?

We apply Zelinka cloud radiative kernels $k=k(\tau,p)$ to satelliteretrieved low-level (>680 hPa) cloud fraction $L=L(\tau,p)$ normalized by the fraction F of the grid box unobscured by higher-level clouds:

$$R' = \bar{F} \sum_{p=1}^{2} \sum_{\tau=1}^{T} k(L/F)'$$

Cloud fraction histograms from MODIS (TERRA+AQUA), ISCCP, PATMOS-x

- These fluxes are exclusively due to changes in unobscured low-level clouds
- We apply a similar equation to the CERES Flux-by-Cloud-Type dataset

Observational Meteorological Cloud Radiative Kernels

Validation of the multi-linear approach

How well does the method predict out-of-sample extremes in the observational record?

Test Case: Northeast Pacific Marine Heatwave

Marine Heatwave Test Case

2015 observations

Out-of-sample

prediction
based on 1983-2002-derived
meteorological kernels

Marine Heatwave Test Case

The linear method is valid for SST perturbations spanning ~2.4 K

Increasing SST was the primary driver of the low cloud reduction

Results: Feedback Constrained by Satellite Cloud Observations

$$\lambda_{cloud} = \frac{dR}{dT} = \sum \frac{\partial R}{\partial x_i} \frac{dx_i}{dT}$$

- Positive feedback in eastern ocean basins and middle latitude North Pacific
- Weaker feedback in trade cumulus regions

Dominant Feedback Components: SST and Est. Inv. Strength

Strong positive SST-driven feedback in eastern ocean basins

Positive EIS-driven feedback in midlatitudes

Negative EIS-driven feedback in tropics

What physical mechanisms produce these feedback components?

Warmer SST Warmer SST Warmer SST

stronger upward surface latent heat flux more cloud-top entrainment drying

Meteorological conditions inducing a *small* negative low cloud feedback

Regime-partitioned cloud feedbacks

(defined using climatological EIS, ω_{700})

Stratocumulus

(strong subsidence, sharp inversion)

Trade cumulus

(weak subsidence, weak inversion)

Tropical ascent

Midlatitudes

(variable ω_{700} , sharp inversion)

Cumulus And Stratocumulus CloudSat-CAlipso Dataset (CASCCAD; Cesana et al. 2019)

Regime-averaged Marine Low Cloud Feedbacks

Regime-averaged Marine Low Cloud Feedbacks

Obs: Positive stratocumulus & midlatitude cloud feedbacks (from amount *and* optical depth)

Obs: Near-zero trade cumulus feedback, consistent with large-eddy simulations*

CMIP6:

more realistic midlatitude feedback

Obs: Positive 60S-60N feedback

Obs: Positive 60S-60N feedback 0.19±0.12 W m⁻² K⁻¹

Obs: Positive 60S-60N feedback 0.19±0.12 W m⁻² K⁻¹

Several CMIP6 models:

beyond upper limit of best estimate due to:

- i) more realistic midlatitude feedback yet
- ii) persistently positive trade cumulus feedback

Obs: Positive 60S-60N feedback 0.19±0.12 W m⁻² K⁻¹

Several CMIP6 models:

beyond upper limit of best estimate due to:

- i) more realistic midlatitude feedback yet
- ii) persistently positive trade cumulus feedback

Weak sensitivity of trade cumulus to SST perturbations relative to stratocumulus explains different feedbacks

Independent observational evidence from active satellites

Cesana et al. (2019)

Cesana and Del Genio (2021) also conclude that the trade cumulus feedback is near-zero.

Implications for ECS Two methods

Implications for ECS Method 1: Emergent-Constraint Approach

Implications for ECS Method 1: Emergent-Constraint Approach

Implications for ECS Method 1: Emergent-Constraint Approach

3% chance that ECS > 5 K 8% chance that ECS < 2.5 K *Models with very low or very high climate sensitivities are likely unrealistic.*

Sherwood et al. (2020) derive near-global marine low cloud feedback of **0.37±0.37 W m⁻² K⁻¹** (sum of tropical and midlatitude marine low cloud amount and high-latitude low cloud optical depth feedbacks)

Sherwood et al. (2020) derive near-global marine low cloud feedback of **0.37±0.37 W m⁻² K⁻¹** (sum of tropical and midlatitude marine low cloud amount and high-latitude low cloud optical depth feedbacks)

Our estimate: **0.19±0.12 W m⁻² K⁻¹**. More realistic because:

-) Explicit evidence that trade cumulus feedback weaker than stratocumulus feedback, in agreement with LES and independent observational evidence
- ii) Most comprehensive set of cloud-controlling factors of all studies

→ Replace Sherwood et al. (2020) low cloud feedback value with ours, leaving all other terms unchanged.

Our estimate points to a more moderate climate sensitivity (~3 K)

The chance that S > 5 K has been reduced by more than half, from 3.1 % to 1.2 %

Our estimate points to a more moderate climate sensitivity (~3 K)

The chance that S > 5 K has been reduced by more than half, from 3.1 % to 1.2 %

Emergent-Constraint Approach: major limitations for inferring real-world climate sensitivity

Summary

Observational meteorological cloud radiative kernels

GCM simulations of meteorological changes = low cloud feedbacks with warming

- ✓ Valid for observed out-of-sample extreme event
- ✓ Predicts positive stratocumulus and midlatitude low cloud feedbacks
- ✓ Predicts near-zero trade cumulus feedback
- ✓ Predicts 60S-60N feedback of 0.19±0.12 W m⁻² K⁻¹
- ✓ Implies ECS near 3 K, reduces likelihood of very low or very high ECS

References

Myers, T. A., R. C. Scott, M. D. Zelinka, S. A. Klein, J. R. Norris, and P. M. Caldwell, 2021: Observational Constraints on Low Cloud Feedback Reduce Uncertainty of Climate Sensitivity. *Nature Climate Change*

Scott, R. C., T. A. Myers, J. R. Norris, M. D. Zelinka, S. A. Klein, M. Sun, and D. R. Doelling, 2020: Observed sensitivity of low cloud radiative effects to meteorological perturbations over the global oceans. *J. Climate*, doi: https://doi.org/10.1175/JCLI-D-19-1028.1.

Meteorological Cloud Radiative Kernels Available at:

https://github.com/tamyers87/meteorological_cloud_radiative_kernels

Meteorological Cloud Radiative Kernels Available at:

https://github.com/tamyers87/meteorological_cloud_radiative_kernels

- Cloud feedbacks associated with internal climate variability (e.g. ENSO, AMO)
- Cloud feedbacks associated with paleoclimates
- Multi-decadal cloud trends
- The performance of global climate models and large-eddy simulations

Extras slides

